Journal of Organometallic Chemistry, 427 (1992) 23–31 Elsevier Sequoia S.A., Lausanne JOM 22400

Tetra-*p*-tolyl-Verbindungen *p*-Tol₄Si und *p*-Tol₄Ge: ein Beitrag zur Konfiguration der Tetraaryl-Methan-Analoga Ar_4M (M = C, Si, Ge, Sn, Pb)

Michael Charissé, Stefan Roller und Martin Dräger

Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität, Johann Joachim Becher-Weg 24, W-6500 Mainz (Deutschland)

(Eingegangen den 13. September 1991)

Abstract

p-Tol₄Si and p-Tol₄Ge have been obtained from the reaction of p-TolLi with SiCl₄ and of p-TolMgBr with GeCl₄, respectively. The crystal structures have been determined and compared with those of the homologous compounds p-Tol₄Sn and p-Tol₄Pb. The latter two molecules (space group $I\overline{4}$) exhibit a S₄ axis running between the aromatic groups and are shortened along this axis: all four p-Tol groups are closer together than in an undistorted tetrahedron. In the cases of the silane and germane (space group Pc), the tetrahedron is lengthened along one of the bond axes C-M: only three of the four p-Tol groups are closer together, and the set up of a special molecular symmetry is blocked. All this is caused by the different atomic radii of the central atoms. ¹³C NMR data in CDCl₃ solution are given.

Zusammenfassung

p-Tol₄Si und p-Tol₄Ge wurden durch Reaktion von p-TolLi mit SiCl₄ bzw. von p-TolMgBr mit GeCl₄ erhalten. Die Kristallstrukturen wurden bestimmt und mit denen der Homologen p-Tol₄Sn und p-Tol₄Pb verglichen. Die beiden letzteren Moleküle (Raumgruppe $I\overline{4}$) enthalten eine zwischen den aromatischen Gruppen verlaufende S₄-Achse und sind entlang dieser Achse gestaucht: alle vier p-Tolyl-Gruppen stehen enger beieinander als in einem unverzerrten Tetraeder. Im Silan und German (Raumgruppe Pc) ist der Tetraeder entlang einer Bindungsachse C-M gedehnt: nur drei der vier p-Tolyl-Gruppen stehen enger beieinander, und die Ausbildung einer speziellen Molekülsymmetrie wird verhindert. Ursache hierfür sind die unterschiedlichen Atomradien der Zentralatome. ¹³C-NMR-Daten in CDCl₃-Lösung werden mitgeteilt.

Einleitung

In Fortsetzung unserer Arbeiten über Gruppe 14-Verbindungen mit p-Tolyl-Substitution [1] beschreiben wir nachfolgend die Kristallstrukturen von p-Tol₄Si

Correspondence to: Professor M. Dräger, Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität, Johann Joachim Becher-Weg 24, W-6500 Mainz, Deutschland.

und p-Tol₄Ge. Diese Untersuchung und ein Vergleich mit anderen Tetraaryl-Methan-Analoga Ar₄M bilden einen Beitrag zur Klärung der intramolekularen Substituentenanordnung in oligomeren Verbindungen mit homonuclearer und heteronuclearer Gruppe 14-Gruppe 14-Verknüpfung [2].

Synthesen

p-Tol₄Si entsteht durch Umsetzung von SiCl₄ mit p-TolLi [3] in Diethylether innerhalb von 90 min bei RT [4,5] (Gl. 1).

$$\operatorname{SiCl}_{4} + 4p \operatorname{-TolLi} \xrightarrow{\operatorname{Diethylether/RT}} p \operatorname{-Tol}_{4}\operatorname{Si} + 4\operatorname{LiCl}$$
(1)

Das dazu analoge Monogerman p-Tol₄Ge erhält man nach Glockling und Hooton [6] durch Kopplung des Grignard-Reagenz p-TolMgBr mit GeCl₄ in Toluol unter Rückfluß (Gl. 2).

$$\operatorname{GeCl}_{4} + 4p \operatorname{-TolMgBr} \xrightarrow{\operatorname{Toluol/110^{\circ}C}} p \operatorname{-Tol}_{4}\operatorname{Ge} + 4\operatorname{MgBrCl}$$
(2)

Röntgenstrukturanalysen

Die beiden isostrukturellen Verbindungen p-Tol₄Si und p-Tol₄Ge kristallisieren in der monoklinen Raumgruppe Pc (Nr. 7). Die Strukturen konnten für alle Nicht-H-Atome mit vollständig anisotropem Datensatz bis R = 0.0469 beim Silan und R = 0.0365 beim German verfeinert werden. Die Reflex/Parameter-Verhältnisse lagen bei 11.4 für p-Tol₄Si und 9.8 für p-Tol₄Ge. Lage- und Temperaturparameter finden sich in Tabelle 1. Figur 1 zeigt das Molekül p-Tol₄Si in einer Projektion in die yz-Ebene.

In Tabelle 2 sind die Bindungsgeometrien des Silans und Germans denen der analogen Zinn- und Bleiverbindungen [7,1] gegenübergestellt. Die sechs Winkel

Fig. 1. Gefundenes p-Tol₄Si-Molekül in Projektion auf die yz-Ebene der Elementarzelle (Atomzuordnung zu den p-Tolyl-Gruppen s. Tabelle 1).

Tabelle 1

	പ
- 1	-
٠.	-
	-
	C
	-
	ຂ
	C
	Ξ
	-
	_
- 7	7
	-
	c
	-
	1
	9
	_
	E
	С
	5
	-
	-
	55
	_
	ų.
	f
	ore O
	tore
	d o t o
	a tore
	aktore
	Taktore
	ITTAKTOFE
	11 TTA KTOFE
	thirta ktore
	ahirtaktore
	raturta ktore
	eraturtaktore
	Deraturtaktore
	Deraturtaktore
	moeramirfaktore
	emperaturtaktore
	emperaturtaktore
	emperaturtaktore
	l emberaturtaktore
	I lemberaturtaktore
	d lemberaturtaktore
	nd lemberaturtaktore
	ind lemberaturfaktore
	und lemberaturfaktore
	n und Temperaturfaktore
	n und Temperaturfaktore
- -	en und Temperaturtaktore
- -	ten und Temperaturtaktore
	agen und Temperaturtaktore
	agen und Lemberaturfaktore
-	nagen und Temperaturfaktore
- -	mlagen und Temperaturfaktore
	omlagen und Temperaturfaktore
-	omiagen und Temperaturfaktore
-	tomiagen und Lemperaturfaktore

Gruppe	Atom	<i>p</i> -Tol₄Si				<i>p</i> -Tol₄Ge			
		x	y	Z	U _{eq} a	×	y	2	$U_{\rm cq}^{a}$
	Si Ge	0.50000	0.23201(5)	0.50000	0.0498(2)	0.50000	0.23240(3)	0.50000	0.0567(2)
<i>p</i> -Tol(1)	C(11) C(13) C(13) C(15)C	0.5943(2) 0.5871(3) 0.6565(4) 0.7354(3) 0.7354(3) 0.7425(3) 0.6742(3) 0.8096(6)	0.0816(2) - 0.0284(2) - 0.1400(2) - 0.1446(3) - 0.0352(3) 0.0751(2) - 0.2661(4)	0.4844(2) 0.5466(2) 0.5321(2) 0.4554(2) 0.4554(2) 0.4057(2) 0.4396(4)	0.052(1) 0.060(1) 0.073(1) 0.073(1) 0.071(1) 0.067(1) 0.061(1) 0.112(3)	 0.5974(4) 0.5887(5) 0.5887(5) 0.5560(6) 0.7354(6) 0.7114(5) 0.6758(5) 0.6758(5) 	0.0770(3) -0.0319(4) -0.1432(5) -0.1471(5) -0.0395(5) 0.0719(4) -0.2691(7)	0.4837(3) 0.5445(4) 0.5290(4) 0.4529(4) 0.4048(4) 0.4048(4) 0.4356(8)	0.057(2) 0.067(2) 0.084(3) 0.079(3) 0.077(3) 0.077(3) 0.128(6)
<i>p</i> -Tol(2)	C(21) C(22) C(23) C(24) C(23) C(23) C(23)	0.6318(2) 0.7760(2) 0.8694(2) 0.8234(3) 0.6807(3) 0.5876(3) 0.9237(4)	0.3532(2) 0.3524(2) 0.4459(2) 0.5455(2) 0.5477(2) 0.4534(2) 0.6500(3)	0.5869(2) 0.5978(2) 0.6603(2) 0.7156(2) 0.7156(2) 0.7075(3) 0.6448(3) 0.7798(3)	0.053(1) 0.057(1) 0.057(1) 0.058(1) 0.058(1) 0.056(1) 0.066(1)	0.6346(4) 0.7787(4) 0.8693(4) 0.8257(5) 0.8246(5) 0.5917(5) 0.9247(6)	0.3585(4) 0.3575(4) 0.4490(5) 0.5490(4) 0.5512(4) 0.4581(5) 0.6535(5)	0.5900(4) 0.5993(4) 0.6607(4) 0.7173(4) 0.71099(5) 0.6464(6) 0.7809(5)	0.057(2) 0.064(2) 0.070(2) 0.076(3) 0.076(3) 0.076(3)
p-Tol(3)	C(31) C(33) C(33) C(34) C(33) C(33) C(33) C(33)	0.3659(2) 0.4009(2) 0.3023(3) 0.1625(3) 0.1246(3) 0.2245(2) 0.0530(4)	0.1952(2) 0.1872(2) 0.1519(3) 0.1236(3) 0.1334(3) 0.1694(3) 0.0823(5)	0.5765(2) 0.6996(2) 0.7538(2) 0.6860(3) 0.5636(3) 0.5636(3) 0.5099(2) 0.7434(5)	0.051(1) 0.060(1) 0.069(1) 0.068(1) 0.054(1) 0.054(1) 0.054(1)	0.3607(4) 0.3964(5) 0.2962(5) 0.1597(5) 0.1235(5) 0.1235(5) 0.0492(8)	0.1930(3) 0.1843(5) 0.1513(5) 0.1221(5) 0.1316(5) 0.1316(5) 0.1667(5) 0.0801(7)	0.5783(4) 0.7004(4) 0.7537(4) 0.6856(5) 0.5655(5) 0.5122(4) 0.7422(7)	0.056(2) 0.069(2) 0.075(3) 0.075(3) 0.075(3) 0.075(3) 0.072(2) 0.113(5)
p-Tol(4)	C(41) C(42) C(43) C(44) C(45) C(45) C(47)	0.4014(2) 0.3664(3) 0.2837(3) 0.2350(3) 0.2596(4) 0.3502(3) 0.1482(4)	0.2938(2) 0.4227(2) 0.4668(2) 0.3863(3) 0.2561(3) 0.2114(2) 0.4369(4)	0.3467(2) 0.3261(3) 0.2155(3) 0.1206(3) 0.1380(3) 0.2498(3) -0.0017(4)	0.053(1) 0.061(1) 0.070(1) 0.070(1) 0.078(1) 0.069(1) 0.097(2)	0.3969(4) 0.3621(5) 0.2804(5) 0.2340(5) 0.2482(8) 0.3461(6) 0.1497(7)	0.2972(4) 0.4233(5) 0.4675(5) 0.3881(6) 0.2587(6) 0.2132(5) 0.4366(8)	0.3421(4) 0.3213(5) 0.2111(5) 0.1172(5) 0.1172(5) 0.1351(6) 0.2451(5) - 0.0044(6)	0.060(2) 0.069(3) 0.075(3) 0.081(3) 0.089(4) 0.078(3) 0.110(4)

^{*a*} $U_{eq} = 1/3$ der Spur des orthogonalen U_{ij} -Tensors.

25

I

1 []

{ |

: 1 1

• • • •

1 .

	<i>p</i> -Tol ₄ Si	p-Tol₄Ge	<i>p</i> -Tol ₄ Sn	p-Tol ₄ Pb
Raumgruppe	Pc	Pc	IĀ	IĀ
Literatur			[7]	[1]
Bindungslängen (Å)				
M-C(11)	1.870(3)	1.941(4)	2.147(6) a	2.217(6) ^a
M-C(21)	1.869(2)	1.943(4)		
M-C(31)	1.879(3)	1.958(5)		
M-C(41)	1.874(3)	1.951(4)		
M-C	1.873	1.948	2.147(6) ^a	2.217(6) ^a
C–C _{arom}	1.387	1.383	1.392	1.382
$\overline{C-C}_{aliph}$	1.514	1.518	1.510(13) a	1.54(1) ^a
Bindungswinkel (°)				
C(11)-M-C(21)	110.0(1)	110.4(2)		
C(11)-M-C(31)	109.4(1)	109.2(2)		
C(11)-M-C(41)	108.3(1)	108.7(2)		
C(21)-M-C(31)	110.5(1)	110.6(2)		
C(21)-M-C(41)	110.4(1)	110.4(2)		
C(31)-M-C(41)	108.2(1)	107.5(2)		
C-M-C	109.5	109.5		
C(1)–M–C(1) (\bar{x}, \bar{y}, z)			114.4(3) ^a	115.4(3) ^a
C(1)-M-C(1) (y, \bar{x}, \bar{z})			107.0(2)	106.6(1)
$\overline{C(1)}-M-C(1)$			109.5 ^b	109.5 ^b

Bindungsgeometrien	der	n-Tol-	Verhin	dungen

^a Infolge S_4 -Symmetrie ein Abstand und zwei Winkel zur Beschreibung der Geometrie um M. ^b [2*(C(1)-M-C(1)(\bar{x}, \bar{y}, z))+4*(C(1)-M-C(1)(y, \bar{x}, \bar{z}))]/6.

der zentralen Gruppe (Si, Ge) $(C_{ipso})_4$ weichen nur wenig vom Tedraederwinkel ab, lassen aber erkennen, daß die Moleküle verzerrt vorliegen: eine Dehnung des Tetraeders entlang der Achse C(21)–(Si, Ge) führt drei *p*-Tolyl-Gruppen näher zusammen als bei exakt tetraedrischer Koordination um Si oder Ge. In den Molekülen *p*-Tol₄Sn und *p*-Tol₄Pb ist der Tetraeder entlang der zwischen zwei *p*-Tolyl-Gruppen verlaufenden S₄-Achse gestaucht, wodurch vier *p*-Tolyl-Gruppen zusammengepreßt werden. Dieser Unterschied in der Fixierung der *p*-Tolyl-Gruppen um das Si- und Ge-Atom einerseits und das Sn- und Pb-Atom andererseits läßt sich durch die kleineren Radien der Atome Silicium und Germanium und durch ein Wechselspiel zwischen Aromaten-Anziehung und aliphatischer Methylgruppen-Abstoßung erklären. Die phenylsubstituierten Methan-Analoga Ph₄M (M = C, Si, Ge, Sn, Pb) besitzen alle fünf S₄-Gestalt [8-12].

Die intramolekularen Wechselwirkungen verschiedener aromatischer Reste bei den Methan-Analoga der Gruppe 14 waren zuvor schon Gegenstand einiger Arbeiten [8,13]. Es kann davon ausgegangen werden, daß nicht so sehr intermolekulare Wechselwirkungen, sondern mehr die Natur der Substituenten und die Größe des Zentralatoms für die unterschiedlichen Abweichungen vom idealen Tetraeder verantwortlich sind. Tabelle 3 gibt einen Überblick über Raumgruppen und Punktgruppen-Symmetrien bei Tetraarylmethan-Analoga Ar_4M .

Tabelle 2

Tabelle 3

Ar	M = C	Si	Ge	Sn	Pb
Ph	P421c [9]	$P\bar{4}2_{1}c$ [10]	<i>P</i> 42 ₁ <i>c</i> [11]	$P\bar{4}2_{1}c$ [12]	P421c [14]
	(S ₄)	(S_4)	(S_4)	(<i>S</i> ₄)	(S_4)
<i>p-</i> Tol	-	Рс	Рс	IĀ [7]	<i>I</i> 4̄ [1]
		a	b	(<i>S</i> ₄)	(S_4)
m-Tol		-	_	I4 ₁ / a [15]	-
				(<i>S</i> ₄)	
o-Tol	-	_	P1 [16]	P421c [17]	-
			b	(<i>S</i> ₄)	
$(C_{6}F_{5})$	-	I4 ₁ / a [18]	I4 ₁ / a [13]	I4 ₁ / a [13]	-
		(S ₄)	(<i>S</i> ₄)	(<i>S</i> ₄)	

Raumgruppe und ideale Punktgruppen-Symmetrie (in Klammern) von bisher untersuchten Tetraarylmethan-Analoga Ar_4M

^a Keine ideale (kristallographische) und auch keine näherungsweise Symmetrie. ^b Keine ideale Symmetrie, aber nur wenig verzerrte Tetraedergeometrie um das Ge-Atom (Winkel 108.8(2x), 109.1, 109.7(2x), 110.8: kaum "Aromaten-Anziehung" zwischen den *o*-Tolyl-Gruppen).

Beim p-Tol₄Si und p-Tol₄Ge erfolgt die Ausrichtung der Substituenten bezüglich einer zentralen M-C-Bindung nach dem Prinzip, daß jede Dreiergruppe einen nahezu senkrecht stehenden (70-85°), einen flach liegenden (15-35°) und einen mittelsteilen (25-50°) Vertreter enthält. Es läßt sich jedoch keine Systematik erkennen: die jeweils zueinander gehörenden Drehwerte weichen so stark voneinander ab, daß es nicht möglich ist, irgendeine näherungsweise Drehachse zu erkennen (Tab. 4). Dies steht im Einklang mit dem oben angeführten Befund der Annäherung von drei der vier p-Tolyl-Gruppen.

Die oben skizzierte Kontrolle der intramolekularen Aromatenanordnung in den einkernigen Verbindungen Ar_4M durch ein Wechselspiel zwischen "Anziehung der aromatischen Bereiche" der Gruppen Ar und "Abstoßung der aliphatischen Bereiche" dieser Gruppen ist ein einfacher Spezialfall einer allgemeineren Beobachtung. Auch in mehrkernigen arylierten Gruppe 14-Verbindungen, wie z.B.

	<i>p</i> -Tol ₄ Si	<i>p</i> -Tol ₄ Ge	
Torsionswinkel (°)			
C(11)-M-C(21)-C(22)	+ 22.8(3)	+ 23.4(5)	
-C(31)-C(32)	+ 83.5(2)	+ 83.3(4)	
-C(41)-C(42)	- 24.5(3)	- 24.6(4)	
C(21)-M-C(11)-C(12)	+ 72.6(2)	+ 72.2(3)	
-C(31)-C(32)	- 37.8(2)	- 38.3(4)	
-C(41)-C(42)	- 35.0(3)	- 34.2(5)	
C(31)-M-C(11)-C(12)	-14.2(2)	- 13.9(4)	
-C(21)-C(22)	+ 36.4(2)	+ 35.7(4)	
-C(41)-C(42)	+ 86.0(3)	+ 86.5(5)	
C(41)-M-C(11)-C(12)	- 48.2(2)	- 49.1(3)	
-C(21)-C(22)	-83.3(2)	- 83.2(4)	
-C(31)-C(32)	-21.2(2)	-21.1(4)	
C(J1)-C(J2)	21.2(2)	-21.1(4)	

Tabelle 4 Verdrillung der *n*-Tolvlgruppen

Verbindung	C(1)	C(2, 6)	C(3, 5)	C(4)	C(Mc)
	(ipso)	(ortho)	(meta)	(para)	
\overline{p} -Tol ₄ Si ^a	131.3	136.4	128.7	139.3	21.5
p-Tol₄Ge	138.7	135.4	129.0	133.1	21.4
p-Tol ₄ Sn ^b [1]	134.5	137.2	129.4	138.8	21.5
p-Tol ₄ Pb ^c [1]	146.4	137.4	130.1	138.1	21.3

Tabelle 5 ¹³C-NMR chemische Verschiebungen δ (ppm) in CDCl₃ (gesättigte Lösung)

in der Reihe der perphenylierten Oligogermane Digerman Ph_6Ge_2 , Trigerman Ph_8Ge_3 , Tetragerman $Ph_{10}Ge_4$ und Pentagerman $Ph_{12}Ge_5$ [19], kann die intramolekulare Arylgruppen-Anordnung durch ein entsprechendes Anziehungs-Abstoßungs-Modell beschrieben werden.

¹³C-NMR-Spektroskopie

Tabelle 5 enthält die ¹³C-NMR-Daten der p-Tol₄M-Verbindungen in CDCl₃-Lösung, in der die teilweise Nicht-Äquivalenz der p-Tolyl-Gruppen im Festzustand aufgehoben ist. Die chemischen Veschiebungen der Tolyl-C-Atome sind gegenüber Benzol nach tiefem Feld verschoben. Die Reihenfolge beim Ge mit C(1) > C(2, 6) > C(4) > C(3, 5) findet sich beim Si nicht wieder. Hier sind C(1) und C(4) in der Signalfolge vertauscht [20]. Die Methyl-C-Atome sind von den Schweratomen nicht beeinflußt und zeigen stets die gleiche chemische Verschiebung bei 21.4 ppm.

Experimentelles

Darstellung der p-TolLi-Lösung

Zu 1.7 g (245 mmol) Li-Pulver werden 14.22 g (83 mmol) *p*-Bromtoluol, gelöst in 50 ml Diethylether, innerhalb 30 min unter Rühren und Schutzgas zugetropft. Dabei erwärmt sich die Reaktionslösung bis zum Sieden. Anschließend rührt man noch 90 min bei Raumtemperatur und weitere 45 min unter Rückfluß. Nach Abschalten des Magnetrührers setzen sich das gebildete LiBr und überschüssiges Li-Pulver ab und die überstehende Lösung kann über ein U-Rohr durch leichten Schutzgasüberdruck in das gewünschte Reaktionsgefäß dekantiert werden.

Synthese des Tetra-p-tolylsilans

1.3 ml (11 mmol) frisch destilliertes $SiCl_4$, gelöst in 50 ml Diethylether, werden bei Raumtemperatur und unter gutem Rühren in Schutzgasatmosphäre innerhalb 30 min zu 83 mmol *p*-TolLi in 50 ml Diethylether zugetropft. Das schwerlösliche *p*-Tol₄Si und LiCl fallen sofort als weißer Niederschlag aus. Die Mischung wird weitere 90 min bei Raumtemperatur gerührt und anschließend mit 50 ml einer 1 N HCl vorsichtig hydrolysiert. Der über einen Büchnertrichter abgesaugte Niederschlag wird mit 50 ml Methanol und mit 100 ml einer 1 N HCl gewaschen. Der Waschvorgang wird noch einmal wiederholt und abschließend mit 50 ml Methanol nachgewaschen. Man erhält einen weißen Feststoff, der nach 1 h Trocknen bei

Tabelle 6

Kristallographische Daten und Details der Strukturbestimmung von p-Tol₄Si und p-Tol₄Ge

	<i>p</i> -Tol ₄ Si	<i>p</i> -Tol₄Ge
Kristalldaten (Mo-K ₋₁ , $\lambda = 0.70926 \text{ Å}$)		· ····································
Summenformel, Molmasse	C ₂₈ H ₂₈ Si, 392.62	C ₂₈ H ₂₈ Ge, 437.13
Kristallform	dicke Platte	rautenförmiges
		Bruchstück
Flächenindizes	0 0 1, 0 0 - 1 (0.575)	100,00-1(0.68)
(Abstand vom Ursprung	1 0 0, -1 0 0 (0.32)	0 1 0, 0 -1 0 (0.20)
im Kristallzentrum (mm))	0 1 0 (0.74)	0 0 1, 0 0 -1 (0.65)
	0 -1 -1 (0.38)	
Kristallfarbe	farblos	farblos
Symmetrie, Raumgruppe	monoklin, Pc (Nr. 7)	monoklin, Pc (Nr. 7)
Gitterkonstanten	a = 9.918(2) Å	a = 9.997(1) Å
	b = 10.458(1) Å	b = 10.498(1) Å
	c = 11.856(4) Å	c = 11.934(3) Å
	$\beta = 109.14(3)^{\circ}$	$\beta = 109.04(1)^{\circ}$
zentrierte Reflexe, Ø-Bereich	50. 24–27°	50. 20–23°
Elementarzellyolumen (\mathring{A}^3) 7	1162(1) 2	1184(1) 2
Dichten $d = d (a/cm^3)$	1 12 1 12	1 23 1 22
Dicition a_{ront}, a_{exp} (g/cm/)	1.12, 1.12	1.23, 1.22
Datensammlung (Mo- $K_{\bar{\alpha}}$, $\lambda = 0.71069 \text{ Å}$)		
Messtemperatur (°C)	22	22
Aufnahmebereich $\omega/2\Theta$ -scan,		
Θ (°), sin θ_{\max} / λ	1.5-30, 0.704	1.5-30, 0.704
Messdauer (d)	4	7
Intensitätsabfall (%)	0	0
Korrektur	keine Korrektur	keine Korrektur
unabhängige Reflexe	3381	3808
verwendete Reflexe		
mit $I > 2\sigma(I)$	3016	2577
μ (cm ⁻¹)	0.78	12.60
Transmissionsbereich	0.9572-0.9151	0.7611-0.4614
Lösung und Verfeinerung der Struktur		
Parameterzahl, (Refl./Param.)	264 (11.4)	275 (9.8)
R-Wert	0.0469	0.0365
R _g -Wert	0.0632	0.0426
Gewichtssetzung w^{-1}	$\sigma^2(F) + 0.00295 \cdot F^2$	$\sigma^2(F) + 0.006061 \cdot F^2$

120°C aus Benzol/Ethanol (5/1) umkristallisiert wird. Ausbeute 2.37 g (60%), Schmelzpunkt 228–230°C (Lit.: 227.5–228.5°C [4]). Analyse: Gef.: C, 85.92; H, 7.25. $C_{28}H_{28}Si$ (392.62) ber.: C, 85.66; H, 7.19%.

Röntgenstrukturanalysen

Durch Umkristallisation aus Benzol/Ethanol (5/1) und langsames Abkühlen über Nacht wurden Einkristalle von p-Tol₄Si erhalten. Beim p-Tol₄Ge erfolgte die Einkristallzucht innerhalb einiger Tage durch Lösen der Substanz in Dichlormethan, Zugabe des gleichen Volumens an Acetonitril und Verschließen des Gefäßes mit einem Wattebausch. Die Dichtebestimmungen erfolgten in wässriger Polywolframat-Lösung durch Schwebemethode. Für die kristallographischen Untersuchungen durch Weißenberg-Aufnahmen (Goniometer der Fa. Huber and Stoe) und zur Sammlung der Reflexintensitäten (Kappa-Diffraktometer CAD4 der Fa. Enraf-Nonius) wurden die Einkristalle in Glaskapillaren festgeklemmt (p-Tol₄Ge), oder so an einer Ecke festgeklebt, daß eine Indizierung noch problemlos möglich war (p-Tol₄Si). Kristallographische Daten und Details der Strukturbestimmungen sind in Tabelle 6 aufgeführt. Die Bestimmung der Mittelschweratomlagen erfolgte durch Direktmethode (p-Tol₄Si) bzw. Patterson-Synthese (p-Tol₄Ge). Fourier- und Differenzfourier-Synthesen lieferten die restlichen C-Atome. Alle Nicht-H-Atome wurden anisotrop verfeinert. Die Lagen der H-Atome wurden beim p-Tol₄Si rechnerisch bestimmt ("reitend") und mit je einem gemeinsamen Temperaturfaktor für die aromatischen bzw. Methyl-H-Atome behandelt. Beim p-Tol₄Ge wurde analog verfahren, hier wurden allerdings die Methyl-Reste als starre rotierende Gruppen behandelt. Ein Vergleich jeweils beider möglichen enantiomorphen Strukturen ergab nur beim p-Tol₄Ge einen Unterschied der Ge-C-Abstände und des R-Wertes. Entsprechend wurde mit dem richtigen Enantiomorph weitergerechnet. Alle Berechnungen wurden im Zentrum für Datenverarbeitung der Universität Mainz (HB-DPS-8/70) mit SHELX76, SHELX86 [21] und lokalen Programmen durchgeführt. Tabellen der F_0/F_c -Werte und der vollständigen Lage- und Temperaturfaktoren können angefordert werden.

NMR-Spektroskopie

Spektrometer Bruker WP80/DS DEPT-Pulsfolge bei 20°C; Meßfrequenzen: 13 C bei 20.15 MHz, 29 Si bei 15.92 MHz; Lösungen von 100-400 mg/3 ml CDCl₃ (Aldrich Nr. 15,182-3).

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung dieser Untersuchungen.

Literatur

- 1 N. Kleiner und M. Dräger, J. Organomet. Chem., 293 (1985) 323; C. Schneider und M. Dräger, ibid., 415 (1991) 349.
- 2 M. Dräger, Comments Inorg. Chem., 5 (1986) 201; M. Dräger, Freiberg. Forschungsh. A, 767 (1986) 119; M. Dräger, Main Group Met. Chem., 11 (1988) 151.
- 3 H. Gilman, E.A. Zoellner und W.M. Selby, J. Am. Chem. Soc., 54 (1932) 1957.
- 4 H. Gilman und G.N.R. Smart, J. Org. Chem., 15 (1950) 720.
- 5 R.A. Benkeser und M.H. Yeh, J. Organomet. Chem., 264 (1984) 239.
- 6 F. Glockling und K.A. Hooton, J. Chem. Soc., (1962) 3509.
- 7 A. Karipides und K. Wolfe, Acta Crystallogr., Sect. B, 31 (1975) 605.
- 8 N.A. Ahmed, A.I. Kitaigorodsky und K.V. Mirskaya, Acta Crystallogr., Sect. B, 27 (1971) 867.
- 9 H.T. Sumsion und D. McLachlan Jr., Acta Crystallogr., 3 (1950) 217; A. Robbins, G.A. Jeffrey, J.P. Chesick, J. Donohue, F.A. Cotton, B.A. Frenz und C.A. Murillo, Acta Crystallogr., Sect. B, 31 (1975) 2395.
- C. Glidewell und G.M. Sheldrick, J. Chem. Soc. A, (1971) 3127; P.C. Chieh, J. Chem. Soc., Dalton Trans., (1972) 1207; L. Parkanyi und K. Sasvari, Period. Polytech. Chem. Eng., 17 (1973) 2071; V. Gruhnert, A. Kirfel, G. Will, F. Wallrafen und K. Recker, Z. Kristallogr., 163 (1983) 53.
- 11 P.C. Chieh, J. Chem. Soc. A, (1971) 3243; A. Karipides und D.A. Haller, Acta Crystallogr., Sect. B, 28 (1972) 2889.

- 12 N.A. Akhmed und G.G. Aleksandrov, Zh. Strukt. Khim., 11 (1970) 891; P.C. Chieh und J. Trotter, J. Chem. Soc. A, (1970) 911; L.M. Engelhardt, W.-P. Leung, C.L. Raston und A.H. White, Aust. J. Chem., 35 (1982) 2383; V.K. Belsky, A.A. Simonenko, V.O. Reikhsfeld und I.E. Saratov, J. Organomet. Chem., 244 (1983) 125.
- 13 A. Karipides, C. Forman, R.H.P. Thomas und A.T. Reed, Inorg. Chem., 13 (1974) 811.
- 14 V. Busetti, M. Mammi, A. Signor und A. Del Pra, Inorg. Chim. Acta, 1 (1967) 424.
- 15 A. Karipides und M. Oertel, Acta Crystallogr., Sect. B, 33 (1977) 683.
- 16 V.K. Belsky, A.A. Simonenko und V.O. Reikhsfeld, J. Organomet. Chem., 265 (1984) 141.
- 17 V.K. Belsky, A.A. Simonenko, V.O. Reikhsfeld und E. Saratov, J. Organomet. Chem., 244 (1983) 125.
- 18 A. Karipides und B. Foerst, Acta Crystallogr., Sect. B, 34 (1978) 3494.
- M. Dräger und L. Ross, Z. Anorg. Allg. Chem., 460 (1980) 207; S. Roller, D. Simon und M. Dräger, J. Organomet. Chem., 301 (1986) 27; S. Roller und M. Dräger, ibid., 316 (1986) 57.
- 20 M.J. Vaickus und D.G. Anderson, Org. Magn. Reson., 14 (1980) 278.
- 21 G.M. Sheldrick, SHELX76, Program for Crystal Structure Determination, Cambridge, 1976; SHELX86, Göttingen, 1986.